Electrostatic free energy landscapes for nucleic acid helix assembly

نویسندگان

  • Zhi-Jie Tan
  • Shi-Jie Chen
چکیده

Metal ions are crucial for nucleic acid folding. From the free energy landscapes, we investigate the detailed mechanism for ion-induced collapse for a paradigm system: loop-tethered short DNA helices. We find that Na+ and Mg2+ play distinctive roles in helix-helix assembly. High [Na+] (>0.3 M) causes a reduced helix-helix electrostatic repulsion and a subsequent disordered packing of helices. In contrast, Mg2+ of concentration >1 mM is predicted to induce helix-helix attraction and results in a more compact and ordered helix-helix packing. Mg2+ is much more efficient in causing nucleic acid compaction. In addition, the free energy landscape shows that the tethering loops between the helices also play a significant role. A flexible loop, such as a neutral loop or a polynucleotide loop in high salt concentration, enhances the close approach of the helices in order to gain the loop entropy. On the other hand, a rigid loop, such as a polynucleotide loop in low salt concentration, tends to de-compact the helices. Therefore, a polynucleotide loop significantly enhances the sharpness of the ion-induced compaction transition. Moreover, we find that a larger number of helices in the system or a smaller radius of the divalent ions can cause a more abrupt compaction transition and a more compact state at high ion concentration, and the ion size effect becomes more pronounced as the number of helices is increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatic free energy landscapes for DNA helix bending.

Nucleic acids are highly charged polyanionic molecules; thus, the ionic conditions are crucial for nucleic acid structural changes such as bending. We use the tightly bound ion theory, which explicitly accounts for the correlation and ensemble effects for counterions, to calculate the electrostatic free energy landscapes for DNA helix bending. The electrostatic free energy landscapes show that ...

متن کامل

Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching.

The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc fi...

متن کامل

Electrostatic Free Energy Landscapes in Nucleic Acid Helix Assembly

The DNA helices are taken as the canonical B-form and are produced from the previously developed grooved primitive model [1]. The grooved primitive model retains a high degree of realistic helical structure and phosphate charge distribution of DNA [2], and is tractable for analytical statistical mechanical theories [3]-[5]. We use the B-form DNA helix since it is the most common and stable form...

متن کامل

Ion-mediated nucleic acid helix-helix interactions.

Salt ions are essential for the folding of nucleic acids. We use the tightly bound ion (TBI) model, which can account for the correlations and fluctuations for the ions bound to the nucleic acids, to investigate the electrostatic free-energy landscape for two parallel nucleic acid helices in the solution of added salt. The theory is based on realistic atomic structures of the helices. In monova...

متن کامل

Energetics of cooperative binding of oligonucleotides with discrete dimerization domains to DNA by triple helix formation.

Cooperativity in oligonucleotide-directed sequence-specific recognition of DNA by triple helix formation can be enhanced by the addition of discrete dimerization domains. The equilibrium association constants for cooperative binding of oligonucleotides that dimerize by Watson-Crick hydrogen bonds and occupy adjacent sites on double helical DNA by triple helix formation have been measured by qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006